วันศุกร์ที่ 4 พฤศจิกายน พ.ศ. 2559

                   

                  Case เคส กล่องใส่ ตู้ CPU คืออะไร

   
                     
     Case คือกล่องที่เอาไว้สำหรับในเมนบอร์ด พาวเวอร์ซับพลาย ฮาร์ตดิส ตัวอ่าน CD/DVD และอุปกรณ์ต่อพ่วงต่าง ๆ เคสนั้นมีหลากหลายขนาด หลายสี บางแบบก็มีไฟสวยงามให้ดูดีมีระดับ ในเคสแต่ละตัวก็จะมีพัดลมติดมาให้แล้ว จำนวนของพัดลมนั้นไม่เท่ากัน บางเคสมี 2 ตัวบางเคสมี 3 ตัว ในปัจจุบันคอมพิวเตอร์รุ่นใหม่ ๆ นั้นต้องการพลังงานไฟฟ้าสูง โดยเฉพาะเครื่องสำหรับนักเล่นเกมส์ หรือโปรแกรมเมอร์ที่ทำงานด้านกราฟฟิก 3มิติ ที่ต้องใช้ความเร็วในการประมวลผลสูง


    ดังนั้นการเลือกเคสจึงต้องดูด้วยว่าแหล่งจ่ายไฟ Power Supply นั้นเพียงพอต่อความต้องการของคอมพิวเตอร์รึป่าว เคสมาตรฐาน ATX [ Advance Technology Extended] เป็นเคสที่นิยมในปัจจุบันพัฒนาต่อมาจาก Baby AT จุดเด่นของ ATX คือการเปลี่ยนแปลงตำแหน่งของหัวต่อต่าง ๆ เอาไปไว้ด้านหลังเพื่อความเป็นสะดวกง่ายในการติดตั้งอุปกรณ์ต่าง ๆ


    และยังออกแบบหัวต่อแหล่งจ่ายไฟของเมนบอร์ดให้เป็นมาตรฐานเดียวกัน มาตรฐาน Soft Start และ Soft Off คือคุณสมบัติที่สามารถใช้โปรแกรมหรือ Bios ควบคุมการเปิดปิดคอมพิวเตอร์ได้ เคส ATX ไดรส์จะติดตั้งด้านหน้าตามปกติ หัวต่อของอุปกรณ์ก็ตจะเรียงกันตามช่องของเคสที่ออกแบบเอาไว้แล้ว เพื่อความสะดวกในการเชื่อมต่ออุปกรณ์


     เคสที่ดีดูยังไง ? การเลือกเคส ขอบของเคสต้องมีการลบคมออกหมดแล้วจะได้ไม่บาดมือเวลาเราติดตั้งอุปกรณ์อะไรลงไป ต้องมีความพอดีและเหมาะสมกับขนาดของเมนบอร์ดที่จะใช้ร่วมกัน เคสต้องออกแบบมาให้อากาศถ่ายเทได้สะดวก ต้องมีช่องสำหรับพัดลมอย่างน้อย 2 ช่อง ด้านหน้าและหลัง ด้านหน้าของเคสควรจะมี Port USB ช่องเสียงลำโพง หูฟัง มาให้ด้วยเพื่อความสะดวกในการใช้งานเชื่อมต่ออุปกรณ์อย่างเช่นโทรศัพท์มือถือและต้องทำจากพลาสติกเพื่อป้องกันไฟดูด ช่องสำหรับติดตั้งอุปกรณ์ต่าง ๆ ต้องออกแบบมาให้พอดีเหมาะสมในการเชื่อมต่ออุปกรณ์ต่าง ๆ จะต้องตรงไม่เบี้ยว ใส่อุปกรณ์แล้วต้องแน่นลงล็อกพอดี

ที่มา sathaphon

วิธีเข้าสาย LAN และอุปกรณ์

วิธีเข้าสาย LAN และอุปกรณ์

สาย LAN/สายตรง/สายครอส, การต่ออุปกรณ์ด้วยสาย LAN สไตล์ CCNA










การเชื่อมต่ออุปกรณ์ Computer และอุปกรณ์เครือข่าย (Hub, Switch และ Router) ด้วยสาย LAN นั้น (ในยุกต์ที่อุปกรณ์ยังไม่มีระบบ Auto Cross / Auto Cross คืออะไร มีอธิบายครับ) เราจำเป็นที่จะต้องรู้ว่าเราควรจะใช้สายตรงหรือสายครอสในการเชื่อมต่ออุปกรณ์อะไรกับอุปกรณ์อะไร (มีในข้อสอบ CCNA ครับ) ซึ่งมีวิธีจำแบบง่ายๆ ที่หลายๆ คนใช้อยู่ (แต่มีจุดที่ต้องระวัง) คือ
- อุปกรณ์เหมือนกัน ต่อกันใช้สาย LAN แบบครอส (Crossover Cable)
- อุปกรณ์ต่างกัน ต่อกันใช้สาย LAN แบบตรง (Straight-Through Cable)
ซึ่งเป็นวิธีจำที่ใช้ได้ในระดับหนึ่ง ซึ่งหลายคนจะเหมารวมว่า "งั้นแสดงว่า Computer ต่อ Router ก็ต้องเป็นสายตรงซิเพราะเป็นอุปกรณ์คนละชนิดกัน" แต่คำตอบที่ถูกต้องคือ Computer ต่อ Router ต้องเป็นสายครอสครับ ซึ่งจากรูปข้างล่าง เป็นรูปที่แสดงถึงการใช้สายครอสกับสายตรง เพื่อเชื่อมต่ออุปกรณ์เครือข่ายอย่างถูกต้องครับ (ใช้อ้างอิงในการสอบ CCNA ได้นะครับ)




แล้วอะไรเป็นตัวที่บอกว่า Router และ Computer เป็นอุปกรณ์ชนิดเดียวกันล่ะ ก่อนอื่น เรามารู้จัก MDI และ MDI-X กันซักหน่อย

MDI หรือ Medium Dependent Interface: เป็นชนิดของ Ethernet port ซึ่งจะถูกใช้อยู่บน Network Interface Card (NIC) หรือที่เราเรียกว่า Card LAN นั่นเอง ซึ่ง Card LAN นี้ก็ถูกเสียบอยู่ Computer อีกทีนั่นแหละ นอกจากนี้แล้ว Ethernet port บน Router เองก็เป็นชนิด MDI ด้วยเช่นกัน

MDIX หรือ MDI-X หรือ Medium Dependent Interface Crossover: เป็นชนิดของ Ethernet port ที่อยู่บน Hub และ Switch นั่งเอง  (อักษร X จะเป็นตัวแทนของคำว่า "Crossover" นั่นเอง) 

ดังนั้นคำว่า
- อุปกรณ์เหมือนกัน ต่อกันใช้สาย LAN แบบครอส (Crossover Cable)
- อุปกรณ์ต่างกัน ต่อกันใช้สาย LAN แบบตรง (Straight-Through Cable)
จึงควรจะถูกใช้ในลักษณะนี้ครับ

- MDI ต่อกับ MDI เป็นชนิดเดียวกันใช้สายครอส (Crossover cable)
- MDI-X ต่อกับ MDI-X เป็นชนิดเดียวกันใช้สายครอส (Crossover cable)
- MDI ต่อกับ MDI-X เป็นคนละชนิดกันใช้สายตรง (Straight-Through Cable)

และจาก
- Port แบบ MDI ประกอบด้วยอุปกรณ์คือ Router และ Computer
- Port แบบ MDI-X ประกอบด้วยอุปกรณ์คือ Hub กับ Switch 

ดังนั้นเมื่อสรุปการเชื่อมต่ออุปกรณ์แล้วจะได้ผลตรงกับรูปข้างบนครับ ซึ่งเป็นรูปในเอกสารการเรียนการสอนของ CCNA ครับ


Auto Cross หรือ Auto MDI/MDI-X คืออะไร?


สำหรับอุปกรณ์ในเครือข่ายที่รองรับการทำ Auto Cross หรือ Auto MDI/MDI-X นั้น เมื่อนำสาย LAN มาต่อกันระหว่างอุปกรณ์แบบผิดหลักการที่กล่าวไปแล้ว (เช่น นำสาย LAN แบบตรงมาต่อกันระหว่าง Switch กับ Switch หรือระหว่าง Computer กับ Computer) หากอุปกรณ์เหล่านั้นรองรับการทำ Auto Cross หรือ Auto MDI/MDI-X แล้ว การเชื่อมต่อจะยังคงสามารถใช้งานได้ เนื่องอุปกรณ์ทั้งสองฝั่งจะทำการเรียนรู้กันและกัน และปรับตัวเองให้รองรับการเชื่อมต่อนั้นได้

มาต่อกันด้วยเรื่องของการเข้าหัว LAN ครับ (จริงๆ แล้วมีหลายคนเขาแชร์เรื่องนี้ไว้มากเหมือนกัน ตอนแรกว่าจะตัดออก แต่คิดๆ แล้วขอใส่เอาไว้ซักหน่อยไว้เป็นทางเลือกด้านข้อมูลครับ)

ก่อนอื่นเรามารู้จักสาย LAN กันซักหน่อยนะครับ สาย LAN ที่คนส่วนใหญ่รู้จักและใช้งานอยู่นั้นมีชื่อเรียกอย่างเป็นทางการว่า สาย UTP หรือสาย CAT5 นั่นเอง ซึ่งผมขออธิบายคำว่า UTP และ STP เชิงเปรียบเทียบก่อนดังนี้ครับ

สาย UTP (Unshielded Twisted Pair Cable) เป็นสายแบบตีเกลียวเป็นคู่ๆ ทั้งหมดสี่คู่โดยไม่มีเกราะป้องกันสัญญาณรบกวนจากภายนอก  (Foil Shield) โดยดูได้ตามรูปข้างล่างครับ






สาย STP (Shielded Twisted Pair Cable) เป็นสายแบบตีเกลียวเป็นคู่ๆ ทั้งหมดสี่คู่ ซึ่งมีเกราะป้องกันสัญญาณรบกวนจากภายนอก  (Foil Shield)  โดยดูได้ตามรูปข้างล่างครับ








หมายเหตุ การที่สาย LAN ต้องมีการตีเกลียวเพื่อที่จะป้องกันสัญญาณรบกวนกันเองภายในสาย LAN โดยการตีเกลียวจะเป็นการทำให้คลื่นแม่เหล็กที่เกิดจากกระแสสัญญาณในสายทองแดงแต่ละเส้นหักล้างกันเอง 

และแน่นอนว่าสายแบบ STP ซึ่งมีเกราะป้องกันสัญญาณรบกวนจากภายนอก ย่อมดีกว่าสายแบบ UTP แต่ทว่าราคาของสายแบบ STP ก็แพงกว่าแบบ UTP ด้วยเช่นกันครับ 

แล้วคำว่า CAT5 คืออะไรล่ะ? คำว่า CAT5 จริงๆ แล้วมาจากคำเต็มๆ ว่า Category 5 หรือสายประเภทที่ 5 ครับ (ผมขอข้ามสาย CAT1 ถึง CAT4 ไปนะครับ) โดยจะขออธิบายสาย CAT5, CAT5e และ CAT6 พร้อมรูปตัวอย่างดังนี้ครับ

สาย CAT5 (Category 5 cable) เป็นสายที่ถูกผลิดขึ้นมาตามมาตรฐานของ Fast Ethernet (100 Mbit/sec) โดยเฉพาะ เหมาะที่จะใช้งานกับ Ethernet Network ที่มี speed 100 Mbit/sec (Interface แบบ Fast Ethernet) เป็นหลักครับ แต่หากจะนำมาใช้กับ Ethernet Network ที่มี speed 1,000 Mbit/sec หรือ 1 Gbit/sec (Interface แบบ Gigabit Ethernet) นั้นก็พอใช้ได้ครับ แต่ประสิทธิภาพอาจจะไม่ดีเท่าไหร่ครับ (ซึ่งสายแบบ CAT5 ก็คือสายแบบ UTP นั่นเองครับ) โดยมีรูปดังข้างล่างครับ






สาย CAT5e (Category 5 enhanced cable) เป็นสายที่มีการพัฒนาขึ้นมา (enhance) จากสาย CAT5 เดิมครับ ซึ่งมีประสิทธิภาพมากกว่า (เพื่อให้สามารถรองรับ Ethernet Network แบบ Gigabit Ethernet ได้) ซึ่งใช้งานได้ดีกับ Ethernet Network ทั้งแบบ 100 Mbit/sec (Fast Ethernet) และแบบ 1,000 Mbit/sec (Gigabit Ethernet) ซึ่งแน่นอนว่าสายแบบ CAT5e ย่อมจะแพงกว่า CAT5 โดยมีรูปดังข้างล่างครับ






สาย CAT6 (Category 6 cable) เป็นสายที่ถูกผลิตขึ้นมาตามมาตรฐานของ Gigabit Ethernet โดยเฉพาะครับ ซึ่งแน่นอนครับ เหมาะกับ Ethernet Network แบบ Gigabit Ethernet แต่อย่างไรก็ตามสาย CAT6 นี้ก็ยังสามารถนำไปใช้งานกับ Ethernet Network แบบ 100 Mbit/sec ได้ครับ โดยมีรูปดังข้างล่างครับ








หมายเหตุ รูปของสาย CAT5, CAT5e และ CAT6 ที่แสดงนี้เป็นภาพตัวอย่างเท่านั้น ดังนั้นเวลาไปซื้อสาย สามารถสังเกตที่ข้างๆ สายได้ครับ โดยจะมีเขียนเอาไว้ว่าเป็นสาย Category อะไรครับ




ทีนี้มาถึงการเข้าหัว LAN กันครับ โดยขั้นแรกเราต้องรู้วิธีการนับขา (pin) ของหัว LAN กันก่อนนะครับ ดังรูปข้างล่าง
หมายเหตุ หัว LAN มีชื่อที่เป็นมาตรฐานคือ หัว RJ-45 ครับ



การเข้าหัว LAN มีมาตรฐานการเข้าอยู่สองแบบดังนี้ครับ
แบบ TIA/EIA 568A ดังรูปข้างล่าง






แบบ TIA/EIA 568B ดังรูปข้างล่าง








การเข้าหัว LAN สำหรับทำสายตรง (Straight-Through Cable) 
การเข้าหัว LAN สำหรับทำสายตรงนั้นมีสองแบบดังนี้ครับ
แบบที่ 1 การเข้าหัวทั้งสองฝั่งเป็นแบบ TIA/EIA 568A ดังรูปข้างล่าง






แบบที่ 2 การเข้าหัวทั้งสองฝั่งเป็นแบบ TIA/EIA 568B ดังรูปข้างล่าง






การเข้าหัว LAN สำหรับการทำสายครอส (Crossover Cable)
การเข้า LAN สำหรับการทำสายครอสนี้สามารถทำได้ง่ายๆ คือ ฝั่งหนึ่งเข้าหัวตามมาตรฐาน TIA/EIA 568A และอีกฝั่งหนึ่งเข้าหัวตามมาตรฐาน TIA/EIA 568B ดังรูปข้างล่างครับ






หรือเจาะลึกลงไปอีกหน่อยคือ 
- Pin 1 เข้า Pin 3 ของอีกฝั่ง
- Pin 2 เข้า Pin 6 ของอีกฝั่ง
- Pin 3 เข้า Pin 1 ของอีกฝั่ง
- Pin 6 เข้า Pin 2 ของอีกฝั่ง
ดังรูปข้างล่างครับ







หากไม่เข้าหัว LAN ตามมาตรฐานจะได้ไหม?


จากประสบการณ์ที่เคยทำงานมาในช่วงแรกๆ ของการเข้าวงการ ผมเคยเข้าหัว LAN แบบตามใจฉัน คือ ถ้าเป็นสายตรง ก็เข้าหัวให้ทั้งสองฝั่งเหมือนๆ กันก็พอ และถ้าเป็นสายครอส ก็เข้าหัวแบบ 1 เข้า 3 และ 2 เข้า 6 อะไรประมาณนี้ 
ผลคือ ใช้งานได้ครับ แต่.... 
หลังจากที่ผมเสียบสาย LAN ดังกล่าวเข้า Interface LAN แบบ 100 M ทั้งสองฝั่ง ผลคือ ผมใช้ได้แค่ 10 M ครับ โดย Card LAN ทำการปรับตัวเองให้กลายเป็น 10 M อย่างอัตโนมัติ (ผลมันแสดงออกบน Windows เลยครับว่าให้ใช้ได้แค่ 10 M)


ทำไมจึงเป็นเช่นนั้น?

เราลองมาสังเกตที่สาย LAN กันสักหน่อยครับ จะเห็นได้ว่าสาย LAN จะมีสายทองแดงข้างในทั้งหมด 8 เส้น แบ่งเป็น 4 คู่ โดยแต่ละคู่จะมีการพันกันเป็นเกลียว (มันจึงชื่อว่า Twisted Pair ครับ) และที่สายแต่ละคู่จำเป็นต้องพันกันเป็นเกลียวนั้นก็เพื่อป้องกันไม่ให้สนามแม่เหล็กที่เกิดจากกระแสสัญญาณมากวนกันเองครับ (พันกันเป็นเกลี่ยวเพื่อให้สนามแม่เหล็กหักล้างกันเอง ไม่มากวนกันเอง) ดังนั้นหากเราไม่เข้าหัว LAN ตามมาตรฐานแล้ว การหักล้างกันของสนามแม่เหล็กอาจจะไม่สมบูรณ์ กลายเป็นสัญญาณที่มารบกวนกันเอง ทำให้เกิด loss ภายในสาย และท้ายสุด Card LAN จำเป็นต้องปรับ speed ลงจาก 100 M ให้เป็น 10 M อย่างอัตโนมัติ เพื่อให้เรายังคงสมารถใช้งานได้ครับ

ที่มา panupop

Wireless USB Adapter

 USB กับ Wireless USB กันก่อน

“ชีวิตไร้สาย-ไร้ขีดจำกัด กับ Wireless USB”
ก่อนอื่นเรามารู้จักกลุ่มที่รวมตัวกันเพื่อพัฒนามาตรฐาน USB  ซึ่งมีชื่อว่า The USB Implementers Forum หรือ (USB-IF) โดยจัดอยู่ในประเภทหน่วยงานไม่แสวงหาผลกำไรที่จะค่อยส่งเสริมและสนับสนุนการพัฒนาเกี่ยวกับ USB ทั้งนี้ กลุ่ม USB-IF นี้ประกอบไปด้วยหลายหน่วยงานที่สำคัญไม่ว่าจะเป็น Apple Computer, Hewlett-Packard, NEC, Microsoft, Intel, and Agere Systems และปัจจุบันได้มีอีกหลายๆหน่วยงานเข้ามาร่วมด้วย
และแล้ว USB-IF ก็ได้มีการพัฒนา USB ให้ก้าวย่างเข้าสู่ยุคไร้สายจนเกิดเป็น “Wireless USB” หรือ WUSB ซึ่งเป็นเทคโนโลยีการเชื่อมต่อไร้สายแบบแรกที่สามารถทำงานรวมกับระบบเดิม หรือ USB แบบธรรมดาได้ โดยยอมให้ผู้ใช้สามารถเชื่อต่ออุปกรณ์ได้มากถึง 127 ชิ้น โดยมีความเร็วในการรับส่งข้อมูลถึง 480Mbps ที่รัศมี 4 เมตร และความเร็วจะต่ำลงจนเหลือประมาณ 110Mbps หากมีการวางอุปกรณ์เลยห่างออกไปจนถึงประมาณ 10 เมตร จึงนับได้ว่าเป็นความก้าวหน้ามาแรงที่จะช่วยทำให้เราเกิดความสะดวกสบายและไม่ต้องรำคาญกับสายอุปกรณ์คอมพิวเตอร์ที่เกะกะอีกต่อไป

USB กับ Wireless USB เหมือนหรือต่างกันอย่างไร

USB

เราคงปฏิเสธไม่ได้ว่า USB นับได้ว่าเป็นเทคโนโลยีที่ได้รับความนิยมอย่างมหาศาล ทั้งในคอมพิวเตอร์ PC เครื่อง Mac และคอมพิวเตอร์ Notebook ซึ่งในปัจจุบันมี port USB ในเมนบอร์ดแทบทุกยี่ห้อ เนื่องจากการใช้งาน USB นั้นสะดวกกว่า Port อื่นๆในอดีต ทั้งในเรื่องของ hot-swapped, ความเร็ว และรวมถึงลักษณะ port ที่ใส่ง่าย มีความสามารถรองรับ Plug & Play ทำให้ USB จึงเป็นเทคโนโลยีที่ประสบความสำเร็จจอย่างมาก

USB ย่อมาจาก (Universal Serial BUS)ได้ถูกพัฒนาโดย COMPAQ, Digital Equipment (รวมกิจการกับ COMPAQ), IBM, Intel, Microsoft, NEC และ Northern Telecom. เพื่อขยายขีดความสามารถในการทำงานของพอร์ตอนุกรม เป็นอินเตอร์เฟสที่เชื่อมต่อระหว่างอุปกรณ์ I/O กับคอมพิวเตอร์

โดยความเร็วในการ รับ-ส่ง ข้อมูลนั้นมีดังนี้
USB 1.1 จะมีความเร็วอยู่ที่ 12 Mbps

USB 2.0 นั้น รองรับระดับการรับส่งข้อมูลได้ถึง 3 ระดับ คือ
                   
ความเร็ว 1.5 Mbps ( Low Speed ) สำหรับการเชื่อมต่อกับอุปกรณ์ที่ไม่จำเป็นต้องส่งข้อมูลคราวละมากๆ

ความเร็ว 12 Mbps ( Full Speed ) สำหรับการเชื่อมต่อกับ USB 1.1

ความเร็ว 480 Mbps ( Hi-Speed ) สำหรับการเชื่อมต่อกับ USB 2.0 ด้วยกัน

ซึ่งลักษณะของการทำงานของหัวต่อทั้งสองแบบมีดังนี้
แบบ A จะเป็นการส่งข้อมูลจากอุปกรณ์ไปยังเครื่อง Computer เพื่อการประมวล เรียกว่า UpStream แบบ B จะกลับกันคือจะส่งข้อมูลเข้าหาอุปกรณ์ เรียกว่า DownStream

Wireless USB (WUSB)

Wireless USB (WUSB) ก็เกิดจากแนวคิด และใช้พื้นฐานเดียวกับ USB แต่พัฒนาให้เป็นแบบการสื่อสารไร้สาย ซึ่งเป้าหมายหลักๆก็เหมือนเช่นเดียวกันกับ USB คือ ใช้กับ PC และอุปกรณ์ต่อพ่วงรวมถึงอุปกรณ์อิเล็กทรอนิกส์ต่างๆ โดยเป็นเทคโนโลยีใหม่ที่ถูกทำมาใช้เพื่อการเชื่อมต่อไร้สายที่มีชื่อเรียกว่า อัลตราไวด์แบนด์ หรือ ultrawideband (UWB) โดยเป็นมาตรฐานการเชื่อมต่อที่มีความเร็วสูง ปลอดภัยและมีความเสถียร โดยมีระบบเชื่อมต่อไกลถึง 10 เมตร คลื่นความถี่วิทยุของ UWB จะอยู่ในช่วง 3.1 ถึง 10.6GHz ซึ่งยากต่อการรบกวน ดังนั้นอุปกรณ์ Wireless USB จึงไม่ถูกรบกวนจากเทคโนโลยีไร้สายอื่นๆ เช่น Wi-Fi, บลูทูธ, โทรศัพท์ไร้สายหรือแม้แต่ เครื่องใช้ไฟฟ้า เช่น เตาไมโครเวฟ
        ทั้งนี้ ข้อดีหลักของ Wireless USB คือการเชื่อมต่อโดยปราศจากข้อจำกัดในเรื่องการต่อสาย จึงทำให้ผู้ใช้งานสามารถเชื่อมต่ออุปกรณ์อื่นๆ เข้ากับเครื่องคอมพิวเตอร์ PC หรือ Notebook โดยไม่จำเป็นที่ไม่มีสายอีกต่อไป เช่น เชื่อมต่อระหว่าง PC กับเครื่องพรินเตอร์ กล้องดิจิตอล เครื่องเล่นMP3 เป็นต้น และด้วยคุณสมบัติที่มีรัศมีทำการไกลสุดอยู่ที่ 30 ฟุต ทำให้เกินการยืดหยุ่นในการใช้งานในลักษณะแบบ Wireless ให้กับอุปกรณ์ที่ต้องการเชื่อมต่อ
ความสามารถเชื่อมต่ออุปกรณ์อื่นๆ เข้ากับเครื่องคอมพิวเตอร์ โดยไร้สาย
ที่มา arnon

ฮาร์ดดิสก์



ฮาร์ดดิสก์  คือ อุปกรณ์คอมพิวเตอร์ที่บรรจุข้อมูลแบบไม่ลบเลือน มีลักษณะเป็นจานโลหะที่เคลือบด้วยสารแม่เหล็กซึ่งหมุนอย่างรวดเร็วเมื่อทำงาน การติดตั้งเข้ากับตัวคอมพิวเตอร์สามารถทำได้ผ่านการต่อแผงวงจรเข้าcกับcz';'0iหลัก (motherboard) ที่มีอินเตอร์เฟซแบบขนาน (PATA) , แบบอนุกรม (SATA) และแบบเล็ก (SCSI) ทั้งยังสามารถต่อเข้าเครื่องจากภายนอกได้ผ่านทางสายยูเอสบี, สายฟร์ไวร์ รวมไปถึงอินเตอร์เฟซอนุกรมแบบต่อนอก (eSATA) ซึ่งทำให้การใช้ฮาร์ดดิสก์ทำได้สะดวกยิ่งขึ้นเมื่อไม่มีคอมพิวเตอร์ถาวรเป็นของตนเอง
ฮาร์ดดิสก์ SSD
โดยในปี 2008 ได้มีการพัฒนาเป็น  โซลิดสเตตไดรฟ์
   





ประวัติ
ชิ้นส่วนภายใน ในปี 1997
ฮาร์ดดิสก์ที่มีกลไกแบบปัจจุบันถูกประดิษฐ์ขึ้นเมื่อ พ.ศ. 2499 โดยนักประดิษฐ์ยุคบุกเบิกแห่งบริษัทไอบีเอ็ม เรย์โนล์ด จอห์นสัน โดยมีความจุเริ่มแรกที่ 100 กิโลไบท์ มีขนาด 20 นิ้ว ในปี พ.ศ2523 ฮาร์ดดิสก์ยังเป็นสิ่งที่หายากและราคาแพงมาก แต่หลังจากนั้นฮาร์ดดิสก์กลายเป็นมาตรฐานของพีซีและราคาถูกลงมาก
สิ่งที่เปลี่ยนแปลงของฮาร์ดดิสก์จากปี 1980 ถึงปัจจุบัน
  • ความจุเพิ่มขึ้น จาก 3.75 เมกะไบท์ เป็น 3 เทระไบต์
  • ขนาดเล็กลงกว่าเดิมมาก
  • ราคาต่อความจุถูกลงมาก
  • ความเร็วเพิ่มขึ้น
  • ขนาดและความจุ
  • แนวโน้มในการเพิ่มขึ้นของการพัฒนาฮาร์ดดิสก์

    ขนาดฮาร์ดดิสในอดีต

    รุ่นและขนาดฮาร์ดดิสตั้งแต่ 8″ 5.25″ 3.5″ 2.5″ 1.8″ และ 1″
    ความจุของฮาร์ดดิสก์โดยทั่วไปในปัจจุบันนั้นมีตั้งแต่ 20จิกะไบต์ถึง 3 เทระไบต์
    • ขนาด 8 นิ้ว (241.3 มิลลิเมตร × 117.5 มิลลิเมตร × 362 มิลลิเมตร)
    • ขนาด 5.25 นิ้ว (146.1 มิลลิเมตร × 41.4 มิลลิเมตร × 203 มิลลิเมตร)
    • ขนาด 3.5 นิ้ว (101.6 มิลลิเมตร × 25.4 มิลลิเมตร × 146 มิลลิเมตร) เป็นฮาร์ดดิสก์สำหรับคอมพิวเตอร์แบบตั้งโต๊ะ (Desktop) หรือเซิร์ฟเวอร์(Server) มีความเร็วในการหมุนจานอยู่ที่ 10,000, 7,200 หรือ 5,400 รอบต่อนาที โดยมีความจุในปัจจุบันตั้งแต่ 80 จิกะไบต์ ถึง 3 เทระไบต์
    • ขนาด 2.5 นิ้ว (69.85 มิลลิเมตร × 9.5–15 มิลลิเมตร × 100 มิลลิเมตร) เป็นฮาร์ดดิสก์สำหรับคอมพิวเตอร์พกพา แล็บท็อป, UMPC, เน็ตบุ้ค, อุปกรณ์มัลติมีเดียพกพา มีความเร็วในการหมุนจานอยู่ที่ 5,400 รอบต่อนาที โดยมีความจุในปัจจุบันตั้งแต่ 60 จิกะไบต์ ถึง 1 เทระไบต์
    • ขนาด 1.8 นิ้ว (55 มิลลิเมตร × 8 มิลลิเมตร × 71 มิลลิเมตร)
    • ขนาด 1 นิ้ว (43 มิลลิเมตร × 5 มิลลิเมตร × 36.4 มิลลิเมตร)
    ยิ่งมีความจุมาก ก็จะยิ่งทำให้การทำงานมีประสิทธิภาพมากขึ้น โดยความต้องการของตลาดในปัจจุบันที่ต้องการแหล่งเก็บข้อมูลที่มีความจุในปริมาณมาก มีความน่าเชื่อถือในด้านการรักษาความปลอดภัยของข้อมูล และไม่จำเป็นต้องต่อเข้ากับอุปกรณ์ที่ใหญ่กว่าอันใดอันหนึ่งได้นำไปสู่ฮาร์ดดิสก์รูปแบบใหม่ต่าง ๆ เช่นกลุ่มจานบันทึกข้อมูลอิสระประกอบจำนวนมากที่เรียกว่าเทคโนโลยี เรด รวมไปถึงฮาร์ดดิสก์ที่มีลักษณะเชื่อมต่อกันเป็นเครือข่าย เพื่อที่ผู้ใช้จะได้สามารถเข้าถึงข้อมูลในปริมาณมากได้ เช่นฮาร์ดแวร์ NAS หน่วยเก็บข้อมูลบนเครือข่าย เป็นการนำฮาร์ดดิสก์มาทำเป็นเครื่อข่ายส่วนตัว และระบบ SAN   เป็นการนำฮาร์ดดิสก์มาเป็นพื้นที่ส่วนกลางในการเก็บข้อมูล
  • การเก็บข้อมูล

  • การเก็บข้อมูลบนฮาร์ดดิสก์
    ข้อมูลที่เก็บลงในฮาร์ดดิสก์จะอยู่บนเซกเตอร์และแทร็ก แทร็กเป็นรูปวงกลม ส่วนเซกเตอร์เป็นเสี้ยวหนึ่งของวงกลม อยู่ภายในแทร็กดังรูป แทร็กแสดงด้วยสีเหลือง ส่วนเซกเตอร์แสดงด้วยสีแดง ภายในเซกเตอร์จะมีจำนวนไบต์คงที่ ยกตัวอย่างเช่น 256 ถึง 512 ขึ้นอยู่กับว่าระบบปฏิบัติการของคอมพิวเตอร์จะจัดการแบ่งในลักษณะใด เซกเตอร์หลาย ๆ เซกเตอร์รวมกันเรียกว่า คลัสเตอร์ (Clusters) ขั้นตอน ฟอร์แมต ที่เรียกว่า การฟอร์แมตระดับต่ำ (Low -level format) เป็นการสร้างแทร็กและเซกเตอร์ใหม่ ส่วนการฟอร์แมตระดับสูง (High-level format) ไม่ได้ไปยุ่งกับแทร็กหรือเซกเตอร์ แต่เป็นการเขียน FAT ซึ่งเป็นการเตรียมดิสก์เพื่อที่เก็บข้อมูลเท่านั้น











ที่มา waratree

                                                                  จอภาพ,Display (คอมพิวเตอร์)

       จอภาพ หรือ วีดียู (อังกฤษ: visual display unit: VDU) หรือชื่ออื่นเช่น จอคอมพิวเตอร์ จอคอม จอมอนิเตอร์ มอนิเตอร์ จอแสดงผล จอภาพแสดงผล จอภาพแสดงผลคอมพิวเตอร์ จอทีวี จอโทรทัศน์ ฯลฯ คือส่วนหนึ่งของเครื่องใช้ไฟฟ้าที่แสดงรูปภาพให้เห็นจากอุปกรณ์ที่สามารถส่งออกวิดีโอ เช่นคอมพิวเตอร์หรือโทรทัศน์ ซึ่งรูปภาพที่ปรากฏสามารถเปลี่ยนแปลงไปได้และไม่คงอยู่อย่างถาวร จอภาพประกอบด้วยส่วนอุปกรณ์ที่แสดงผลให้เห็น และวงจรอิเล็กทรอนิกส์ภายในที่สร้างรูปภาพจากสัญญาณวิดีโอ อุปกรณ์ที่แสดงผลยุคใหม่จะเป็นจอภาพผลึกเหลวทรานซิสเตอร์แผ่นบาง (thin film transistor liquid crystal display: TFT-LCD) และจอภาพยุคก่อนเป็นหลอดภาพรังสีแคโทด (cathode ray tube: CRT)


    ขนาดของจอภาพ

          ขนาดของจอภาพจะวัดจากมุมหนึ่งของจอ ไปยังอีกมุมหนึ่งในแนวทแยงที่อยู่ตรงข้ามกัน แต่ปัญหาหนึ่งของการวัดแบบนี้คือไม่สามารถแยกแยะได้ว่าจอภาพจะมีอัตราส่วนลักษณะ (aspect ratio) เท่าใด แม้ว่าจะมีขนาดทแยงมุมเท่ากัน เนื่องด้วยข้อเท็จจริงที่ว่ารูปสี่เหลี่ยมผืนผ้าจะมีพื้นที่น้อยกว่ารูปสี่เหลี่ยมจัตุรัสเมื่อกำหนดให้เส้นทแยงมุมยาวเท่ากัน ตัวอย่างเช่น จอภาพ 21 นิ้วในอัตราส่วน 4:3 มีพื้นที่ประมาณ 211 ตารางนิ้ว ในขณะที่จอภาพไวด์สกรีน 21 นิ้วในอัตราส่วน 16:9 จะมีพื้นที่แสดงผลเพียง 188 ตารางนิ้วเท่านั้น

      การวัดด้วยวิธีนี้มาจากโทรทัศน์แบบหลอดภาพชนิดเริ่มแรก เนื่องจากหลอดภาพในสมัยนั้นเป็นรูปวงกลมโดยปกติ เมื่อเอ่ยถึงขนาดของหลอดภาพก็เพียงวัดขนาดของเส้นผ่านศูนย์กลางของรูปวงกลม และเมื่อหลอดภาพวงกลมต้องแสดงภาพเป็นรูปสี่เหลี่ยม การวัดระยะเส้นทแยงมุมของรูปสี่เหลี่ยมก็เทียบเท่ากับการวัดเส้นผ่านศูนย์กลางของหลอดภาพเพื่อให้ภาพเต็มจอพอดี วิธีการนี้ก็ยังใช้กันเรื่อยมาแม้ว่าหลอดภาพจะเปลี่ยนรูปร่างไปเป็นรูปสี่เหลี่ยมโค้งมนแทน

      อีกปัญหาหนึ่งคือการวัดขนาดหน่วยแสดงผลของจอภาพโดยตรง ซึ่งเป็นขนาดเพื่อการโฆษณาสินค้าและพบเห็นได้ทั่วไป โดยเฉพาะกับหลอดภาพรังสีแคโทด จะมีหน่วยแสดงผลส่วนหนึ่งซึ่งถูกบดบังตามขอบจอเพื่อซ่อนส่วนที่อยู่นอกพื้นที่ปลอดภัย เรียกว่าโอเวอร์สแกน (overscan) ดังนั้นขนาดที่ได้เห็นจริงจึงมีพื้นที่น้อยกว่าขนาดที่โฆษณาอยู่เล็กน้อย ลูกค้าที่ซื้อไปใช้รู้สึกว่าถูกหลอกจึงมีการร้องเรียนอย่างกว้างขวาง และหลายคดีก็ตัดสินว่าให้ผู้ผลิตจอภาพต้องวัดขนาดพื้นที่ที่แสดงผลได้จริง แทนที่จะวัดจากขนาดของหลอดภาพ

  
   เทคโนโลยีการฉายภาพ

        เทคโนโลยีฮาร์ดแวร์ที่แตกต่างกันหลายอย่าง มีขึ้นเพื่อใช้ส่งออกภาพวิดีโอที่สร้างจากคอมพิวเตอร์และโทรทัศน์

เทคโนโลยีฮาร์ดแวร์ที่แตกต่างกันหลายอย่าง มีขึ้นเพื่อใช้ส่งออกภาพวิดีโอที่สร้างจากคอมพิวเตอร์และโทรทัศน์
  • จอภาพผลึกเหลว (LCD)
    • จอภาพผลึกเหลวแบบส่องไฟผ่าน (passive LCD) เคยใช้ในแล็ปท็อปจนถึงช่วงกลางคริสต์ทศวรรษ 1990 ด้วยมีข้อเสียที่ว่ามีความคมชัดต่ำและตอบสนองช้า
    • จอภาพผลึกเหลวทรานซิสเตอร์แผ่นบาง (TFT-LCD) สามารถสร้างภาพได้ดีกว่า ปัจจุบันจอภาพผลึกเหลวแทบทั้งหมดเป็นประเภทนี้

  • หลอดภาพรังสีแคโทด (CRT)
    • จอภาพคอมพิวเตอร์แบบแรสเตอร์ สร้างภาพโดยใช้พิกเซลมาประกอบกัน เป็นอุปกรณ์แสดงผลที่นิยมมากสำหรับคอมพิวเตอร์รุ่นก่อน
    • จอภาพคอมพิวเตอร์แบบเวกเตอร์ ใช้งานกับอุปกรณ์เรดาร์ เครื่องมือทางวิทยาศาสตร์ เครื่องเกมเวกเทรกซ์ (Vectrex) รวมไปถึงเกมตู้อย่างแอสเทอรอยด์ส (Asteroids) เนื่องจากจำเป็นต้องใช้ระบบของการสะท้อน
    • โทรทัศน์เคยใช้เป็นจอภาพให้กับคอมพิวเตอร์ส่วนบุคคล โดยการเชื่อมต่อสัญญาณวิดีโอประกอบ (composite video) (ขั้วกลมสีเหลือง) เข้ากับตัวกล้ำสัญญาณ (modulator) แต่คุณภาพและความละเอียดของภาพมักจะถูกจำกัดโดยความสามารถของโทรทัศน์นั้นเอง

  • จอภาพพลาสมา (PDP)
  • เครื่องฉายภาพวิดีโอใช้ CRT, LCD, DLP, LCoS, และเทคโนโลยีอื่น ๆ เพื่อที่จะฉายภาพไปบนสกรีนฉายภาพ เครื่องฉายภาพด้านหน้าจะใช้สกรีนเป็นตัวสะท้อนแสงกลับมาสู่ผู้ชม ในขณะที่เครื่องฉายภาพด้านหลังใช้สกรีนเป็นตัวกระจายแสงให้หักเหออกไปข้างหน้า เครื่องฉายภาพด้านหลังกับสกรีนอาจรวมอยู่ในเครื่องเดียวกันอย่างโทรทัศน์
  • จอภาพยิงอิเล็กตรอนบนตัวนำที่ผิวหน้า (surface-conduction electron-emitter display: SED)
  • จอภาพไดโอดเปล่งแสงชีวภาพ (organic light emitting diode: OLED)
  • จอภาพเพเนทรอน (penetron) ใช้กับอากาศยานทหาร

   การวัดประสิทธิภาพ

    ประสิทธิภาพของจอภาพสามารถวัดได้จากหลายปัจจัยดังนี้
  • ความส่องสว่าง วัดในหน่วยแคนเดลาต่อตารางเมตร
  • ขนาดของจอภาพ วัดความยาวตามแนวทแยง สำหรับหลอดภาพ บริเวณที่เห็นภาพมักจะเล็กกว่าขนาดของหลอดภาพอยู่หนึ่งนิ้ว
  • อัตราส่วนลักษณะ คืออัตราส่วนของพิกเซลในแนวนอนต่อแนวตั้ง อัตราส่วนปกติคือ 4:3 เช่นจอภาพที่กว้าง 1024 พิกเซล จะสูง 768 พิกเซล ถ้าเป็นจอภาพไวด์สกรีน จะมีอัตราส่วนเป็น 16:9 ดังนั้นจอภาพที่กว้าง 1024 พิกเซล จะสูง 576 พิกเซล
  • ความละเอียดจอภาพ คือจำนวนพิกเซลตามความกว้างและความสูงที่สามารถแสดงผลได้ (ไม่ได้หมายถึงพิกเซลที่กำลังแสดงผลภาพอยู่ในปัจจุบัน) ความละเอียดที่มากที่สุดถูกจำกัดโดยระดับพิกเซล (ดูถัดไป)
  • ระดับพิกเซล คือระยะระหว่างพิกเซลสีเดียวกันในหน่วยมิลลิเมตร หากระดับพิกเซลน้อยลง ภาพจะมีความคมชัดมากขึ้น
  • อัตรารีเฟรช คือจำนวนครั้งในหนึ่งวินาทีที่ภาพนั้นถูกฉายลงบนหน้าจอ อัตรารีเฟรชที่มากที่สุดถูกจำกัดโดยเวลาตอบสนอง (ดูถัดไป)
  • เวลาตอบสนอง คือเวลาที่ใช้ไปขณะพิกเซลเปลี่ยนจากสีดำไปเป็นสีขาว และกลับมาเป็นสีดำอีกครั้ง วัดในหน่วยมิลลิวินาที ค่าที่น้อยลงหมายความว่าจอสามารถเปลี่ยนภาพได้เร็วขึ้น และหลงเหลือภาพก่อนหน้าน้อยกว่า
  • อัตราส่วนความแตกต่าง คืออัตราส่วนความส่องสว่างของสีที่สว่างที่สุด (สีขาว) ต่อสีที่มืดที่สุด (สีดำ) ที่จอภาพนั้นสามารถสร้างได้
  • การใช้พลังงาน วัดในหน่วยวัตต์
  • มุมในการมอง คือมุมที่มากที่สุดที่หันเหหน้าจอออกไปแล้วยังสามารถมองเห็นได้ โดยภาพที่ปรากฏยังไม่ลดคุณภาพ เช่นสีเพี้ยนเป็นต้น

ที่มา benjamaporn